传统高锰钢在中低载荷工况下不具有优势,在其基础上通过降低或增加碳锰元素含量研发出中锰和超65锰钢板高锰钢,在一定程度上弥补了其应用中存在的不足。
本文对比研究了Mn8、Mn15及Mn18三种锰钢的滑动和冲击磨料磨损性能,分析了磨损机理。同时模拟矿井淋水腐蚀环境,探讨了三种锰钢的电化学腐蚀性能,论文得到以下主要结论:酸性矿井淋水腐蚀条件下,三种锰钢表现出更负的腐蚀电位,酸性工况下耐腐蚀性能弱于碱性和中性腐蚀环境。酸、中、碱性矿井淋水腐蚀环境中,Mn8钢的开路电位正(65mn锰冷轧钢板),极化曲线外推拟合腐蚀电压 ,腐蚀电流小,且容抗弧半径小,其耐腐蚀性能优于Mn15和Mn18耐磨钢。滑动磨损实验表明,三种锰钢的摩擦系数均呈现先快速升高,后下降到一定的范围趋于平稳的变化趋势,低载平均摩擦系数高于高载。相同磨损工况条件下,Mn8均具有 磨损失重,其抗滑动磨料磨损性能优于Mn15和Mn18耐磨钢。
三种耐磨钢磨损层硬度分布均呈现梯度变化特征,Mn8磨损亚表层(50mm处)65锰钢板硬度达到550HV,Mn15和Mn18分别为450HV和510HV,Mn8的加工硬化效果佳,Mn18则优于Mn15。三种耐磨钢干摩擦磨损机理主要表现为粘着磨损,伴有局部区域的疲劳剥落破坏,石英砂磨料磨损机理主要为磨粒磨损,表现形式为宽且深的犁沟和较大区域的疲劳剥落。冲击磨料磨损实验表明,随冲击功的增大,三种锰钢的加工硬化能力均提高,磨损失重也明显降低。1.5J冲击功时,Mn18的磨损失重低于Mn8和Mn15;3.5J冲击功时,Mn8具有 的磨损失重。Mn8和Mn18亚表层组织具有较高密度的孪晶,亚表层(50mm处)硬度分别达到50HRC和48HRC,其加工硬化效果明显优于Mn15,加工硬化层深度超过1.5mm。三种锰钢磨损形式主要表现为凿削磨损和不同程度疲劳剥落磨损。
65锰钢板Mn8、Mn15磨损层亚结构主要为位错、孪晶及马氏体,其耐磨强化机制为马氏体相变复合强化机制。Mn18磨损层亚结构出现大量位错、孪晶外,未发现马氏体相变,但出现Fe-Mn-C原子团偏聚区,其强化机制是通过位错、孪晶和Fe-Mn-C原子团强化
众鑫42crmo冷轧耐磨锰钢板圆钢金属材料有限公司一家专业生产 河南周口45号冷轧钢板的厂家,我厂始终秉承“以品质为基础,以服务为宗旨”,力求给广大客户提供z u iz u i优质的产品,z u i的服务,自创建以来赢得了客户的一致好评和业内的高度赞扬。公司拥有专业的设计制作团队、高标准的精良设备,公司拥有自己的生产厂房,能批量设计生产各种 河南周口45号冷轧钢板等产品。公司制作材料的应用,技术的开发,质量的检验和制作工艺上都有严格的标准,每个细节都力求完美精益求精。
3)65锰冷轧钢板o热轧实验钢佳临界退火+淬火和配分(IA&QP)工艺参数为760℃临界区退火30min,180℃等温淬火10s并在350℃等温配分180s。该工艺下热轧实验钢展现出了 力学性能,即抗拉强度1231MPa,伸长率24.8%,强塑积可达30.5GPa·%。IA&QP工艺处理后4Mn-Nb-Mo热轧实验钢的抗拉强度均超过了 1024MPa,但伸长率和RA含量不高。
(4)采用新型循环淬火和奥氏体逆相变(CQ-ART)65锰钢板工艺处理后的4Mn-Nb-Mo冷轧实验钢,晶粒尺寸得到了明显的细化,同时RA含量显著提高。两次循环淬火后的CQ2-ART冷轧试样具有高RA含量(62.0%)、佳晶粒尺寸(0.40μm)以及稳定性;这为RA在变形期间TRIP效应的产生提供了有力的保证。终CQ2-ART试样获得了 综合性能,即抗拉强度为838MPa,伸长率为90.8%,强塑积达到76.1GPa·%。(5)研究4Mn-Nb-Mo和5Mn-Nb-Mo实验钢奥氏体稳定性因素,发现Mn元素的含量是影响其稳定性的主要因素。不同晶粒尺寸和Mn含量的RA具有不同等级的RA稳定性。实验钢RA中存在明显的Mn配分行为,进而导致RA具有不同级别的稳定性,也因此表现出不同的加工硬化行为。本论文设计的4Mn-Nb-Mo和5Mn-Nb-Mo两种低合金实验钢在拥有明显综合性能优势的同时达到了尽量减少总合金元素含量的目的。
(6)65锰钢板三种实验钢S3阶段加工硬化率曲线的大幅度波动归因于不连续TRIP效应。其原因在于RA在拉伸过程中转变为马氏体并且发生了体积膨胀,进而抵消部分应力集中并使应力转移到周围相中而产生协同变形,伴随着应力的松弛和转移;其次,实验钢中的RA需要有不同等级批次的稳定性,当应力值达到或超过该等级批次RA可发生相变的临界值才可产生TRIP效应。(7)Ms点受到RA中化学成分、晶粒尺寸、屈服强度和应力状态等作用影响。可通过将实验钢MSσ温度控制在使用温度以下,以获得更多更稳定的RA,进而产生更为广泛的TRIP效应,终提高实验钢的综合性能。
zhongxin
相应的研究结果分别如下:相图计算及膨胀仪热模拟结果表明,65mn锰冷轧钢板Al元素有效拓宽了临界区温度工艺窗口;DICTRA软件对具有相同平衡态两相比例临界区奥氏体化过程的元素配分模拟显示Al元素的添加显著了合金元素(尤其是有利于锰铝等置换元素)的扩散效率,有助于残留奥氏体中碳锰元素的富集与稳定;高铝添加导致δ铁素体存留至室温,降低了含铝中锰TRIP钢抗拉强度的同时了PLC现象;原位拉伸SEM中δ铁素体内大量交错的位错滑移带证明了其良好的应变协调性。
临界区奥氏体化温度通过调控临界区奥氏体比例实现含铝中锰钢的多元强度级别设计。相较含铝中锰TRIP钢而言,以回火马氏体组织为主要基体“骨架”的含铝中锰IQ-TP钢展现出更高的屈服强度;XRD和APT检测到残留奥氏体内的碳锰元素富集、相界面处锰铝元素的偏聚等现象证明了回火配分阶段合金元素的局部平衡(LE)。65锰冷轧钢板IQ--TP工艺下临界区奥氏体化及回火过程两阶段的元素配分促进了残留奥氏体碳锰元素的富集,同时回火马氏体组织切割细化了残留奥氏体晶粒进一步增加了其稳定性,
65锰钢板因而含铝中锰IQ-TP钢表现出优异的力学性能。以4Mn1Al钢为例,其热轧IQ-TP钢,抗拉强度达1425±43MPa,同时延伸率25.9±3.8%,均明显优于含铝中锰TRIP钢抗拉强度1345MPa,延伸率18.9%的 力学性能。而4Mn2Al热轧IQ-TP钢抗拉强度达1319±39MPa,延伸率27.4±1.1%。膨胀仪组织热模拟及EPMA成分分析证实了含铝中锰TRIP钢冷轧退火组织的异常长大现象受控于锰铝元素偏析下关键温度区间的加热速率。富Al贫Mn区抑制了奥氏体的形核,慢加热速率为形变马氏体的再结晶行为及晶粒长大提供了充分的动力学条件。超细晶冷轧含铝中锰TRIP钢由于其较小的位错运动平均自由程,具有明显的屈服平台。异常长大的铁素体带提供了应变初期较高的加工硬化率,有利于缩短材料的屈服平台延伸率。而含铝中锰IQ-TP钢由于马氏体组织及几何必要位错的存在呈现出连续屈服特征。含铝中锰IQ-TP钢的塑性主要源于软相板条形态铁素体的“润滑剂”效应以及残留奥氏体的持续性TRIP效应。