采光屋面纵向活动弹性钢支座的详细视频已经上传,我们的视频将带您领略产品的独特设计、卓越品质以及出色性能,让您对它有更深刻的认识和了解。


以下是:采光屋面纵向活动弹性钢支座的图文介绍

采光屋面纵向活动弹性钢支座

网架(网壳)结构作为一种高次超静定空间杆系结构,由于其受力性能好(理论上杆件只受轴力作用)、刚度大、整体性及抗震性能好、承载力强、受支座不均匀沉降影响小、适应性强,而计算理论的日益完善以及计算机技术飞速发展,使得对任何极其复杂的三维结构的分析与设计成为可能,因此网架结构被广泛应用于工业与民用建筑领域中。但网架结构如果其支承结构、支座型式及边界条件设计不合理会对网架结构的性和经济性造成重要影响。o5MBIM网1.支承结构与支承方式o5MBIM网目前在很多工程中,网架(网壳)一般由专业的钢构公司根据事先假定的边界约束条件进行设计,再将他们算出来的支座反力作为外加荷载作用到下部支承结构中。把网架(网壳)和下部支承结构分开计算,网架支座相对于下部结构的位移虽然可以通过弹性约束方法模拟,但是由下部支承结构变形带来的支座沉陷等支座本身的变位很难估算准确,算出来的结构内力在某些情况下会与实际情况差别较大,可能会给工程留下隐患。下部结构可能是柱,也可能是梁,也可能是其他结构形式,不仅刚度是有限的,而且具体工程刚度差异可能很大,在这种假定条件下,算出来的杆件内力、支座反力及下部结构内力与采用网架支座刚度为实际刚度且上、下部结构共同工作的力学模型所计算出来的结果肯定是不相同的。另外,分开计算还割裂了上下部结构的协同工作,使得上、下部结构的周期和位移计算均不准确。o5MBIM网通常网架的支承可以分为:周边支承、点支承以及点支承与周边支承混合使用三种方式,周边支承是将网架周边节点搁置在梁或柱上,点支承则是将网架支座以较大的间距搁置于独立梁或柱上,柱子与其他结构无联系。网架(网壳)搁置在梁或柱上时,可以认为梁和柱的竖向刚度很大,忽略梁的竖向变形和柱子轴向变形,因此网架(网壳)支座竖向位移为零,网架(网壳)支座水平变形应考虑下部结构共同工作。在周边支承网架(网壳)支座的径向应将下部支承结构作为网架(网壳)结构的弹性约束,而点支承网架(网壳)支座的边界条件应考虑水平X和Y两个方向的弹性约束。支承结构的等效弹簧刚度计算有如下几种:o5MBIM网1)支承柱支承o5MBIM网柱子水平位移方向的等效弹簧刚度为:Kc=3EcIc/H3co5MBIM网式中Hc:柱高;Ic:柱截面惯性矩。o5MBIM网2)两端简支梁支承o5MBIM网由长度为L,网架支座位于距梁端为a的简支梁的等效弹簧刚度为:Kb=3EbIbL/a2(L-a)2o5MBIM网式中a:作用点距梁端距离;L:梁长;Ib:梁截面惯性矩。o5MBIM网3)橡胶垫支座o5MBIM网由高度为Hp的橡胶垫支承的支座等效弹簧刚度为:o5MBIM网Kp=GpAp/Hpo5MBIM网式中Ap:橡胶垫面积;Hp:橡胶垫高。o5MBIM网在实际工程中往往是在梁顶或柱顶增加橡胶垫弹性支座,特别是在大跨度网架中,通过橡胶垫支座以满足温度应力的变形要求,这就要求考虑梁或柱弹性刚度与橡胶垫弹性刚度的叠加,当K1与K2叠加时,由位移叠加得其叠加刚度K为:1/K=1/K1+1/K2;有K=1/(1/K1+1/K2)。o5MBIM网2.支座(支座节点)o5MBIM网结构与基础的连接区简化为支座,按其受力特征分为五种:活动铰支座(滚轴支座),固定铰支座,定向支座(滑动支座),固定(端)支座和弹性(弹簧)支座。o5MBIM网弹性支座在提供反力的同时产生相应的位移,反力与位移的比值保持不变,称为弹性支座的刚度系数。弹性支座既可提供移动约束,也可提供转动约束。当支座刚度与结构刚度相近时,宜简化为弹性支座。当结构某一部分承受荷载时(如研究结构稳定问题),其相邻部分可看作是该部分的弹性支承,支座的刚度取决于相邻部分的刚度(如将斜拉桥的斜拉索简化为弹簧支座)。当支座刚度远大于或远小于该部分的刚度时,弹性支座则向前四种理想支座转化。o5MBIM网o5MBIM网图弹性支座与理想支座o5MBIM网网架结构一般都支承在柱顶或圈梁等下部支承结构上,支座节点即指位于支承结构上的网架节点。它既要连接在网架支承处汇交的杆件,又要支承整个网架,并将作用在网架上的荷载传递到下部支承结构。因此,支座节点是网架结构与下部支承结构联系的纽带,也是整个结构中的一个重要部位。一个合理的支座节点必须是受力明确、传力简捷、可靠,同时还应做到构造简单合理,制作简单方便,具有较好的经济性。o5MBIM网网架结构的支座节点应能保证可靠地传递支承反力,因此必须具有足够的强度和刚度。在竖向荷载作用下,支承节点一般均为受压,但在一些斜放类的网架中,局部支座节点可能承受拉力作用,有时还可能要承受水平力的作用,设计时应使支座节点的构造适应它们的受力特点。同时支座节点的构造还应尽量符合计算假定,充分反映设计意图。由于网架结构是高次超静定的杆件体系,支座节点的约束条件对网架的节点位移和杆件内力影响较大;约束条件在构造和设计间的差异将直接导致杆件内力和支座反力的改变,有时还会造成杆件内力变号。因此对网架结构支座节点的设计应给予足够的重视。o5MBIM网网架结构设计是否、经济,关键因素首先在于所选的支承结构、支座型式及边界条件是否合理,为此在具体设计中我们尽可能避免将上部网架结构与下部支承系统单独分析、设计,尤其当网架支座相对于下部结构的位移很难通过弹性约束方法模拟时,更应当将支承结构与上部网架一起进行整体建模、计算分析,以使所计算出来的结果更符合实际。o5MBIM网o5MBIM网



   抗震网架钢结构支座在钢桁架工程中的作用是支座对球部件的约束力通过球心,可用三个相互垂直的分量替代待定的该约束力。球铰是一种空间的连接铰,它有两个部件组成,球与球壳。该铰只允许两部件绕公共的球心相对转动,限制它们三方向的相对移动。球铰的工程背景为球轴承、固定球铰支座等。
  网架钢结构支座通过球面传力、不出现力的缩颈现象,作用在混凝土上的反力比较均匀;球形支座通过球面聚四氟板的滑动来实现支座的转动过程,转动力矩小,而且转动力矩只与支座球面半径及聚四氟板的摩擦系数有关,与支座转角大小无关。因此特别适用于大转角的要求,设计转角可达0.05rad以上。支座各向转动性能一致,适用于宽桥、曲线桥等; 支座不用橡胶承压、不存在橡胶老化对支座转动性能的影响,特别适用于低温地区。
 网架钢结构支座是依据交通行业标准《球形支座技术条件(GB/T17955-2009)及建筑抗震设计规范(GB50011-2001)钢结构设计规范(GB50017-2003),经详细的静力学、动力学分析研制而成的新型抗震减振钢支座。抗震减振支座结构更加合理,性能更加可靠,使用寿命更长。该支座包括固定支座、单向、双向三种型式,22个等级,其水平承载力、竖直方向拔力及支座的整体强度均比普通支座有大幅度提高。

 




瑞诚工程橡胶有限公司秉承“质量赢得顾客,信誉创造效益,真诚为客户创造价值!”的经营理念,在竞争激烈的 广东深圳固定铰支座行业中与您共同发展,共谋大业!



体育场馆用网架钢结构支座主要由上座板、球面四氟板、球芯、底座、平面四氟板、不锈钢板、箱体组成。转角是由球芯与上座板、底座的相对转动来实现;位移由底座在箱体中滑移实现;抗竖向拉力由球体、底座、箱体实现;水平力由箱体、底座、上座板实现;固定支座不带位移箱。与上部结构的连接,采用高强度螺栓连接。
也可采用焊接;与下部结构的连接。采用焊接,特殊情况也可以做成高强度螺栓连接。注意事项:A、网架钢结构支座组装后整体发运的,安装前应检查,看零件有无丢失、损坏。检查上部结构和支座上座板螺孔间距和孔径是否相符,选用型号是否正确,转角、各方向位移是否与设计相符,检查以设计图纸为准。
B、安装时应对其上下底板的四边划注十字中心线。便于安装找正,安装时将支座上座板与上部结构的钢板用高强度螺栓连接,并需用大于500mm的扳手人力拧紧。特殊情况需要特殊扳手安装,人力拧紧。C、确定后,即可上下固定,支座与上下构造连接方式,可以用高强度螺栓连接也可以焊接,或两种方式同时使用。
当采用焊接时,必须设置预埋钢板,与混凝土接触的一面还应焊接锚固筋。以求一定的强度和刚度,支座厂家可以连预埋件一起生产。预埋钢板应有适当数目的,直径不大的,均匀分布的排气孔。焊接时不应连续拖焊,要采用断续焊接的方式逐步焊满,以避免焊接时局部温度过高而使支座或预埋钢板变形。D、支座安装或焊接完成后将上下连接板拆除。




点击查看瑞诚工程橡胶有限公司的【产品相册库】以及我们的【产品视频库】