更新时间:2024-11-16 02:27:42 浏览次数:1 公司名称:聊城 众鑫42crmo冷轧耐磨锰钢板圆钢金属材料有限公司
产品参数 | |
---|---|
产品价格 | 4700 |
发货期限 | 4556 |
供货总量 | 4556 |
运费说明 | 一天 |
材质 | 65锰钢板 |
规格 | 1500*4000 |
品牌 | 河钢、敬业 |
切割方式 | 激光加工 |
状态 | 冷轧、热轧、淬火 |
众鑫42crmo冷轧耐磨锰钢板圆钢金属材料有限公司借助先进的加工设备与先进的技术,专业、的管理团队,坚持发挥团队粗神,合作共赢的理念,结合自产自销 浙江台州45号冷轧钢板的经营战略,让我们给客户提供的是价廉物美的 浙江台州45号冷轧钢板产品与服务! 欢迎广大新老客户光临惠顾,我们将竭诚为您服务!
近年来,中65锰钢板因具有优异的强塑积且兼顾了经济性与工业可行性而成为了第三代汽车用钢中的一个研究热点,如何进一步提高其力学性能是人们研究的重点之一。
基于此,本文在传统中锰钢研究的基础上,设计了一种V合金化中锰钢并对其进行了热轧、冷轧、温轧及随后的两相区退火处理,较为系统地研究了实验钢在不同轧制状态及不同退火温度下的观组织和力学性能变化规律,探讨了V合金化对中锰钢强度的影响。得到的主要结果如下:本文通过研究热轧+两相区退火(625℃-800℃)处理的实验钢组织与力学性能,得出的结果表明:实验钢组织主要为长条状δ-铁素体、板条状的α-铁素体+残余奥氏体(Retained austenite,RA)以及大量细小弥散的VC析出相。对于625℃和750℃的两相区退火试样,VC的析出强化增量分别为-347 MPa和-234 MPa;随着退火温度(Intercritical annealing temperature,TIA)的,65锰冷轧钢板VC析出相尺寸增大和RA板条粗化引起了屈服强度的显著降低。
随着TIA的,RA含量先增加后降低,稳定性持续降低,导致实验钢的强塑积先增加后降低;当TIA为725℃时,可获得高达-50GPa·%的强塑积,并且屈服强度达到890 MPa,从而具有优异的强塑性配合。通过研究冷轧+两相区退火(650℃-800℃)处理的实验钢组织与力学性能,其结果表明:冷轧退火态实验钢的组织主要为长条状δ-铁素体、等轴状α-铁素体+RA以及大量细小弥散的VC析出相。65mn锰冷轧钢板其中,当TIA较低时,组织中存在少量板条状组织;随着TIA升高,板条状组织逐渐消失,等轴状组织逐渐增多。此外,随着TIA的升高,RA含量逐渐增加而RA稳定性持续降低,导致实验钢的强塑积先增加后降低。其中,当TIA为700℃时,获得高达-52.6GPa·%的强塑积。通过研究温轧以及温轧+两相区退火(650℃-800℃)处理的实验钢组织与力学性能,其结果表明:温轧原始态及温轧+退火态实验钢的组织均为δ-铁素体、板条状与少量等轴状共存的α-铁素体+RA以及大量细小弥散VC析出相。当TIA为650-750℃时,其强塑积均能保持在50 GPa·%以上,这表明温轧处理使实验钢具有较宽的热处理工艺窗口。因此,温轧处理有可能成为一种简化传统中锰钢生产应用的新方法。
随着汽车轻量化战略的实施及汽车行业需求的变化,高强度高塑性的先进高强钢被开发及应用。65锰钢板尤其是以中锰钢等钢种为代表的第三代先进高强钢兼顾成本及性能,在低制造成本的前提下,其强塑积能达到30 GPa-%级以上。
在开发中锰钢等第三代先进高强钢的过程中,亚稳奥氏体及其稳定性被认为是影响钢材优异力学性能的关键因素;在应用中锰钢等钢种的过程中,亚稳奥氏体及其稳定性会影响回弹等成形方面的问题,因此需要深入研究。65mn锰冷轧钢板本文以强塑积为30 GPa-%级的高强塑中锰钢为研究对象,分析了组织中亚稳奥氏体在不同应变速率和不同变形方式下的稳定性;并以此为理论依据,探讨了弯曲变形过程亚稳奥氏体发生的相变行为以及亚稳奥氏体对弯曲回弹的影响, 基于奥氏体特征建立了回弹预测模型,实现了中锰钢回弹行为的高精度预测。本文的主要工作和结论如下:利用高速拉伸实验及数字图像关联技术(Digital image correlation,DIC)研究了不同应变速率下亚稳奥氏体的稳定性。
结果表明,在应变速率为10-3s-1至5×101s-1范围内,奥氏体稳定性随着应变速率的增加而增加。通过EBSD和TEM观察发现,不同应变速率下,高强塑中锰钢观组织的演变规律基本保持一致,即奥氏体随着应变量的增加逐渐发生畸变,其内部产生层错,部分奥氏体转变成马氏体;铁素体内部几何必要位错密度随着应变量的增加而显著增加,并形成高密度的小角度晶界;奥氏体晶粒内的层错随着应变速率的增加呈现逐渐稀疏的趋势。结合热动力学计算及观组织分析,65mn锰冷轧钢板在应变速率由10-3 s-1增加至5×101s-1时,奥氏体的层错能由9.8 mJ/m2升高至18.7mJ/m2,层错能的升高抑制了奥氏体的转变,增加了奥氏体稳定性;同时应变速率增加导致发生相变的临界能量升高以及相变驱动力降低,也是奥氏体稳定性上升的原因。通过板材成形实验及DIC技术研究了不同变形方式下亚稳奥氏体的稳定性。